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ON VISCOUS FLOW IN CURVED PIPES OF NON-UNIFORM 
CROSS-SECTION 
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SUMMARY 
This paper is concerned with steady, laminar flow of an incompressible NewtoNan fluid in curved pipes of non- 
uniform cross-section. During the past decade a number of numerical solutions for flow in curved pipes have been 
obtained using progressively improved computational methods and technology; see e.g. Soh and Berger (Znt. j .  
nume,: rnethodsjhids, 7, 733-755 (1987)) and Green et al. (Phil. Tmm. R. SOC. Lond. A, 342,543-572 (1993)) 
for relevant references. These results have been confined mamly to l l l y  developed flow in pipes of constaat cross- 
section. The present study deals with curved pipes of variable cross-section in which the velocity field is 
necessarily a hc t ion  of the axial location along the pipe centreline in addition to the two cross-sectional co- 
ordinates. We use the finite difference method on a staggered grid with Newton's method to solve the Navier- 
Stokes equations. Results are calculated and presented for non-uniform pipe geometries with curvatm ratios of 
0.01 and 0.1. The velocity field for flow through curved pipes of non-uniform cross-section is compared with the 
corresponding results for flow through straight pipes of non-uniform radius and curved pipes of uniform radius, 
revealing important qualitative differences. The basic developments presented are applicable to a variety of flows 
in pipes, including those in arteries and piping systems. 
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1. INTRODUCTION 
In this paper we consider steady, laminar flow of an incompressible Newtonian fluid in curved pipes of 
non-uniform cross-section. The related problem of viscous fluid flow in curved pipes of constant 
circular cross-section has been of considerable interest to researchers analytically, numerically and 
experimentally since the 1920s. In 1927 Dean published the first analytical solution for fully developed, 
laminar flow of a Newtonian fluid in pipes of infinitesimally small curvature ratio and constant cross- 
section at small Dean number. The Dean number is generally defined as the product of the Reynolds 
number, based on some mean axial velocity, and the square root of the ratio of the radius of the pipe 
cross-section to the constant radius of curvature of the pipe centreline. Dean's results were obtained by 
considering a perturbation of flow in a straight pipe'*2 for small curvature ratio. Interest in obtaining 
analytical solutions to this problem for a larger range of Dean number has continued. For example, 
Green et d3 utilized a direct theory for viscous flow in pipes4 to obtain solutions for l l l y  developed 
flow in curved pipes of constant cross-section. During the past decade, researchers have taken advantage 
of the increase in available computing power to obtain numerical solutions to this problem over a large 
range of curvature ratio and Dean number (such as those obtained by Yang and Kelle? and Soh and 
Berger6). Background information and further references on this subject can be found in books by 
Pedley7 and Ward-Smith' and in review articles by Berger ef al? and It&" 

The aforementioned results have been confined mainly to fully developed flow in pipes of uniform 
cross-section. This work, however, deals with flow in curved pipes of variable cross-section in order to 
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Figure 1. Segment of a pipe of variable cross-section showing its centreline (broken curve) which forms an arc of constant radius 
R. Also shown m the orthonormal bases 5 and the corresponding rectangular co-ordinates xi. The inner surface of the pipe, 

r = ~(s), and the bases 5,q and 5 are labelled for a cross-section at axial location s 

study the coupled effects of variable diameter and pipe curvature ratio on the flow field. For the case of 
flow through pipes of variable cross-section the velocity field is necessarily a function of the axial 
location along the pipe centreline as well as the two cross-sectional co-ordinates. Hence the problem 
cannot be formulated in terms of two spatial variables, p a t l y  increasing the complexity and sue of the 
numerical problem over that of hlly developed flow. 

The basic equations used in this study are the Navier-Stokes equations for an incompressible 
Newtonian fluid which are summarized in Section 2. These equations are subsequently written in non- 
dimensional form with respect to toroidal co-ordinates (r, 4, s) (Figure 1). Given a toroidal co-ordinate 
system (r, 4, s), the pipe centreline can be identified with the curve defined by r equal to zero. A 
longitudinal section of pipe can then be identified by specifying a constant value of circumfmtid 
angle 4. In Figure 2 we consider such a segment mapped into the ILS plane and identify the class of 
flows considered here. In particular we consider flows for which there is a transition region due to the 
variable radius, labelled 11 in Figure 2, between two regions (I and 111) of fully developed flow. In the 
course of analysis it becomes necessary to identify the extent of the transition region 11. The point on the 
centreline separating regions I and I1 will be regarded as the point at which the flow ceases to be fully 
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developed. Similarly, the point between regions I1 and III will be taken as the point at which the flow 
commences to be l l l y  developed. 

In Section 3 we discuss the numerical procedures used to obtain a discrete approximation to the 
differential equations of motion and the methodology used for solving the resulting system of non-linear 
algebraic equations. The staggered grid system used in the numerical formulation is defined and the 
discrete approximations to the differential equations of motion for points on the grid are introduced. We 
choose the toroidal co-ordinate system, introduced above and further discussed in Section 2, because it 
is especially convenient for the analysis of flow in curved pipes. However, it should be emphasized that 
for this co-ordinate system care is needed in the numerical formulation of the equations of motion at 
points in the vicinity of the centreline, since at the centreline the toroidal co-ordinate system exhibits 
singular behaviour. We introduce a method for developing consistent discrete approximations to the 
equations of motion in this region. A discussion of the procedure used to solve the resulting system of 
non-linear algebraic equations is then provided. Section 4 contains results obtained using the numerical 
procedures described in Section 3. Velocity fields and the extent ofthe flow transition region for the case 
of flow through a curved pipe of non-uniform cross-section are compared with corresponding results for 
flow through both straight pipes of non-uniform radius and curved pipes of constant cross-section. 

This work has applications to blood flow in curved sections of the arterial system where the cross- 
section of the artery is non-uniform. This variation in radius can be due, for example, to atherosclerosis 
(see e.g. Reference 11) or to a mismatch in elastic properties between an artery and arterial graft.'' In 
addition, this work has industrial applications to flow in curved pipes which are non-uniform owing to 
material deposits on the pipe walls. Our results provide insights into the strong coupling between the 
effects of pipe curvature and of non-uniform cross-section in these systems. 

2. FORMULATION OF THE PROBLEM 

The local form of the condition of incompressibility and the equations of linear momentum for steady 
flow of an incompressible, homogeneous Newtonian fluid referred to rectanaar Cartesian co-ordinates 
are 

vi*i = 0,  (1) 
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where ui are the components of velocity vector 3 p is the Lagrange multiplier arising from the 
incompressibility constraint, p is the constant mass density, p is the shear viscosity, the notation ( ), i  

denotes a( )/axi and repeated indices imply summation over the values of the index ( i  = 1 ,  2 ,  3). 
We now introduce a toroidal co-ordinate system (r, 4, s) with respect to rectangular Cartesian co- 

ordinates xi through the relations (see Figure 1) 

and the inverse relations 

(4) 
S S 

x, = (R + rcos 4) sin- R '  x3 = rsin4. XI  =(R+rCOS~)COS-, R 
Any point in Euclidean 3-space can be specified by a position vector _r =  xi^, which using (4) can be 
written as 

S S 
r = (R + rcos 4)cos-el + (R + rcos $)sin-% + rsin r$g3 R- R - 

= ( r +  R c o s ~ ) ~  - Rsin&, 

where 9 and 9 are defined as 
S S + sin-e2) R -  + sin4g3, +sinEh)  +cos+g3. (6) 

Using (6) and 6 defined by 
. s  S e = -sm-eI +cos-e 

R- R -2' 
(7) 

we obtain the o r t h o n o d  basis &, 4 ,~ ) .  

designated r = fi(s), is of the form 
We consider flow through curved pipes of circular cross-section for which the inner radius of the pipe, 

where so, tl and y are pipe geometry parameters which will be specified in Section 4. As can be seen in 
(8), at axial locations where s is less than or equal to so the inner wall of the pipe has radius a. The pipe 
surface defined in (8) includes the degenerative case of a pipe of constant radius, i.e. a = 0. 

As mentioned in Section 1, we confine attention to a class of flows which are steady, namely the 
pressure and velocity field are independent of time. The flow rate, designated Q, is defined through the 
relationship 

Q = pndii, 
A 

(9) 

where g is the outward unit n o d  to the surface A and & is a temporary notation used to denote a 
differential area. The flow rate is constant for steady flow of an incompressible fluid in a pipe, inde- 
pendent of both time and spatial variables. We use this result to define a characteristic velocity W b y  

Q W=- 
.a, ' 

where, as defined in (8), u is the radius of the pipe at axial locations where s is less than or equal to so. 
We also recall definitions for three non-dimensional variables, the Reynolds number Re, the pipe 
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curvatw ratio 6 and the Dean number K defined as 
a 

(1 1) 

Using the characteristic velocity defined in (lo), we introduce the following non-dimensional quantities 
designated by the ' ' notation: 

6 = E ,  K = 2ReJ6. P Wa R e = - ,  
cc 

We use (8) and (1 2) to obtain 

where S=s/o and So=so/a. We then use these nondimensional quantities to obtain the non- 
dimensional form of the equation of incompressibility and the 5, e+ and 5 components of the 
equations of motion (dropping the '-' notation in this and hture equahons): 

a(urB) a(vB) aw 
O=- +- +r-, t ad as (14) 

aw vaw waw sw 
t ra4  B a s  B 

u- + -- + -- + - (u cos 4-  v sin 4) 

(17) 
dsin4a-w 1 P w  2 6 (  au +---- 

rB a$ B2 as2 B2 as as 
whereB= 1 +Srcos4. 
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Before closing this section, we make some remarks about the choice of non-dimensional variables 
used in (12). In studies of flows which are not fully developed, a velocity profile may be specified at a 
cross-section and a characteristic velocity can then be obtained. In our developments we specify a 
velocity profile at s = 0 and define the characteristic velocity to be Q/na', where Q is obtained using the 
specified velocity profile and equation (9). In contrast, for the case of fully developed flow a velocity 
profile is not specified at any cross-section, hence an alternative choice of characteristic velocity is used. 
In this case the velocity vector is independent of the axial variable and as a result the axial component of 
the pressure gradient ap/as is constant. This constant value, frequently denoted -G in the literature, is 
sometimes used to define non-dimensional velocity components (see e.g. Reference 3) as 

where Wo = aZG/8p. Other authors, e.g. Dennis" and Daskopoulos and Lenh0ff,I4 use an alternative 
definition of non-dimensional velocity components, namely 

We emphasize that the non-dimensionalization in (19) is such that the limiting case of 6 = 0 does not 
correspond to a straight pipe but rather to a pipe of small curvature ratio. For our purposes we employ 
the non-dimensional variables defined in equation (12), since this choice enables us to include the 
limiting case of non-fully developed flow in straight pipes in our analysis. 

As was discussed in Section 1 ,  we consider flows for which there is a transition region due to the 
variable radius, labelled 11, between two regions of fully developed flow which are respectively labelled I 
and 111. Figure 2 shows a schematic diagram of these three flow regimes. The point on the centreline 
located at the beginning of region I is defined to be s equal to zero. The point labelled s m q  in Figure 2 
is the point on the centreline at which the flow ceases to be fidly developed and separates regions I and 
11. Similarly, smaxII is the point at which the flow commences to be fully developed and separates 
regions I1 and 111. The point labelled smaxlII denotes the end of region 111. Also shown in this figure is 
the point so which denotes the axial location at which the pipe radius begins to increase tiom the 
constant value a to a second radius a( 1 + a) as indicated by (8). We consider flows which are symmetric 
about the plane x3 = 0 (see Figure l),  for which case 

u(r, 4 , s )  = u(r, -4,s), d r ,  4, s) = -4r, -4, s), w(r, 4, s) = w(r, -4, s). (20) 

As a result of the flow symmetry (20), we choose the domain of the fluid to be that bounded by the 
surface x3 = 0 and the lateral surface of the pipe, r = q(s). The upstream and downstream boundaries on 
the flow are the planes perpendicular to the centreline of the pipe, passing through the points s equal to 
zero and to sm(uIU1. On the lateral surface we specify the no-slip boundary condition, namely 

im), 494 = 0. (21) 

It is clear from (20) that 

4 r ,  0, s) = v(r, n, s) = 0. (22) 

As will be further elaborated on in Section 3, we specify a fully developed velocity profile, denoted %, 
at the beginning of region I, i.e. 

(23) dr ,  4 , O )  = &,(r, 4)- 
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and specify that the flow be fully developed at s = smaxm, namely 

In the equations of motion (1) and (2) the pressurep occurs only in the  term^,^, namely as operated on 
by the gradient operator. The pressure field is therefore determined as part of the solution up to an 
additive constant. Equations (14x17) in conjunction with conditions (20H24) and the condition on 
the pressure field constitute the formulation of the problem under consideration. 

3. NUMERICAL PROCEDURES 

As in Reference 15, where laminar entrance flow in a curved pipe of constant cross-section is studied, 
we use a non-uniform staggered grid for our finite difference formulation. 

3.1. Non-unijbnn grid 

For the pipe flow under discussion it is clear at the outset that the flow field has the simplest 
dependence on the spatial variable s in flow regimes I and III (where the flow is fully developed) as well 
as in areas of flow regime I1 bordering regimes I and III. We therefore define a co-ordinate mapping 
S= qs) such that points separated by a constant distance S= Af correspond to a grid of points which is 
least dense in areas of the flow field just mentioned. We use the co-ordinate mapping S=$.s) defined 
h u g h  the invertible relationship 

s = $ ( i ) = A  -sin(Z+2C)+3 1 + -  +D, K ( 31 
where constants A and D are chosen such that the domain 3. E [0, Smaxm] corresponds to the domain 
s E [0, smqn] .  E is non-negative and constants E, C and Smax, axe chosen dependent on both the pipe 
surface geometry and the flow parameters as will be discussed in Section 4. 

In order to simplify the discrete form of the no-slip condition (21) at numerical grid points 
corresponding to the lateral boundary of the pipe, we define the new independent variable P through 
the invertible relation 

where the surfw P= 1 coincides with the surface r = q(s). 

as functions of (F, 4, f). For example, a functionf(r, 4, s) can be written as 
It is clear from (25) and (26) that dependent variables which are functions of (r, 4, s) can be written 

f = j ( r .  4. s) = j ( F ,  4.5) (27) 

and therefore 

where q’, d and f l  stand for 
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Table I. Notation used for the staggered grid system 

Grid Grid Discrete Corresponding location Total number 
label symbol operator of grid points of grid points 

P 0 P[i. j.kl ( f v  4, $=(r2i, 41j, s1k) LMN 
( i =  1,2, .. . , L ; j  = 1,2, ...( M; 
k =  1,2, ..., N) 

P 0 Pikl Centreline (4 + 4 = R2, x3 = 0): N -  1 
s=slk (k = 1 , 2 , .  . . , N - 1) 

U 0 "Ii. J.kl (f, 4, $=(rli, 41jY s1k) LMN 
( i =  1,2 , .  .. , L; j =  1 , 2 , .  .., M ;  
R =  1,2, ..., N) 

( i =  1,2 ,..., L; j =  1,2  ,..., M -  1; 
k =  1,2, . . . , N )  

( i =  1.2 ,.... L ; j =  1,2 ,..., M; 

v A yi. j.kl (f, 4, $=(rli, 42j9 ~ 1 3  L(M- l)N 

W A Ti. j.4 (f, 4, f) = (rlii 41j, s2k) LM(N - 1) 

k =  1.2, .... N -  1) 

Using (25)-(29), we can rewrite the non-dimensional form of the equations of motion (14)-(17) with 
respect to spatial variables (F, 4,s'). These equations are not included here but can be found in 
Reference 16. 

3.2. Staggered grid 

We define approximations to the continuous functions p ( f ,  4, S), u(F, 4, S), v(f, 4, S) and 
w(F, 4, S) on a staggered grid, i.e. the four discrete functions are defined on four dzfemnt grids. 
Schematics of these grids are denoted by 0,0, A and A in Figure 3 and will be referred to as the p, u, u 
and w grids respectively. For example, the discrete function which is an approximation to u(F, 4, S) is 
defined on a three-dimensional grid composed of points designated (i, j, k), where i = 1,2,  . . . , L, 
j = 1 , 2 , .  . . , A4 and k = 1,2 ,  . . , , N. This grid, which we call the u grid, corresponds to points 
designated by the symbol 0 in Figure 3, where we have introduced rl i ,  r2i, 4 1 j ,  42j, s 1 k and s2k as 

We use the notation qi, j,kl to denote the discrete function which is an approximation to the continuous 
function u(f, 4, S) at the point (r l i ,  ( 6 I j ,  slk). Similar notation is used to identify points on thep, v and 
w grids and is summarized in Table I. 

We use the following notational scheme to indicate the values of functions B, q and j3 at points on the 
staggered grid: 
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I 

Fi~3.Schrmaticofthecamputationalgridsystnn.~ddtscribedin~on3.2,thep,u,vandwgridsaredcnotedbyO,O. 
A and A respectively. In (a)thep, u and u grids axe drawn for fixedaxial locatio~~s=sl~ Similarly, in (b) thcp. u and w grids arc 

dqlayed for fixed angle Q = 61, 

Owing to the nature of a staggered grid, it is necessary to interpolate the discrete function on a given grid 
to obtain approximate values of this discrete hct ion at points on a different grid. The notation used to 
denote these interpolations is defined in Table II. 

The discrete form of the no-slip boundary condition (21) is 

U[L+I ,  j . ~  = ~ [ L + I ,  j , ~  = WK+I, j , ~  = 0 (32) 

and the discrete condition corresponding to (23) can be written as 

~ [ i , j , 0 1  = G(rli* 4lj).ei qi.j.01 = h(r l i*  42j).%p ~[i , j ,01 = h(rli ,  4lj).e* (33) 

U[i.j.iv+~] = U[i, j,Nl* Yi.j.N+lJ = Yi. j . 4 .  "'[i, j,Nl = W[i. j.iv-11. (34) 

A second-order approximation for the fully developed flow condition (24) takes the form 

Using conditions (20) and (22) and the staggered grid notation just defined, we obtain symmetry 
conditions for the discrete operators, namely 
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Table 11. Definition of dimte operators used to approximate a hctionfat points on the staggered grid 

Notation for Definition of orda of 
discrete Bccuracy of discrete 

operator operator aDplVXimation 

Second 

Second 

Fourth 

Second 

U [ ~ , M + I , ~ ]  = u [ i , ~ , k ] *  U[ i ,~+2 ,k]  = u[i,M-I,kp qi,M.&] = ov 

Y ~ , M + I , ~  = - q i . ~ - ~ . k p  w[i.M+l,kj = W [ i , ~ , k ] *  W[i,M+2,k] = W[i,M-l,k]. 
(36) 

The above particular conditions (35) and (36) are sufficient symmetry conditions for the numerical 
formulation. As discussed at the beginning of this section, for the formulation of this problem we 

a value of the pressure p at one point in the fluid domain. For our purposes we specifL the 
pressure to be zero at a point on the centreline of the pipe corresponding to f=slN, i.e. fiW = 0. 

As discussed in Section 2, the equations of motion (14H17) can be written with respect to spatial 
variables (f, 4, s). We replace the differential operatoxs in the nsulting equations by the finite difference 
operatols summaflzed . in Table III to obtain the following second-order finite difference approximations 
to the equations of motion: 

I 

= Dlr[u[i, j . k p l [ i ,  j.&]rl[i]l + DI&i. j-l,k]i3[i,j-l,k]l 
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Table 111. Definition of discrete operators used to approximate the continuous differential operators 

Notation for 
discrete 
operator 

Delinition of 
discrete 
operator 

Corresponding order of 
continuous - of 

opetator approximation 

second 

hi. j.k+11 -h i .  j,&-11 
2As 

Second 

Fourth 

second 

second 

second 

Fourth 

Fourth 

Fourth 

second 

second 

second 

Seumd 
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These equations are defined on the p, u, v and w grids respectively with the following exceptions. As 
will be discussed in the next subsection, equation (37) is not used for points on the p grid which 
correspond to the centreline of the pipe. In addition, the operators D2?, D, and Dn defined in Table 111 
will not be used at grid points adjacent to the centreline. 

3.3. Pipe centreline 

It is clear from (3) that 4 is undefined on the centreline of the pipe, 4 + 4 = R2, x3 =O.  
Consequently, neither orthonormal base vector 5 nor Q is defined on this curve and hence neither 
is the velocity component u nor v. This characteristic of the toroidal co-ordinate system has three 
important implications for our finite difference formulation. 

1. At points near the centreline the value of the radial variable r is of order Ar, so care must be taken 
in formulating the finite difference approximations to maintain the order of accuracy of the 
approximation. 

2. The incompressibility condition (1) is not defined on the centreline when written in component 
form relative to toroidal co-ordinates (r, 4, s). 

3. At points adjacent to the centreline the finite difference approximations D2?, D, and Dn defined 
in Tables III are not valid. 

These results, which are due to the singular nature of the toroidal co-ordinate system (r, 4, s) on the 
centreline,* are independent of the physics of the problem. 

Terms in the equations of motion with coefficients 1 /P and 1 /?' must be approximated carellly near 
the centreline where Pis of the order of Ai .  For example, the differential operator in the term (1 /F)aU/84 
must be approximated by a third-order finite difference approximation in order for the entire expression 
to be an approximation with m r  ofthe order o f b 2 .  TO simplifj. the numerical formulation, we use the 
higher-order approximation for the underlined terms at all grid points. 
Equation (37) cannot be used as the discrete approximation to (1) at points on the p gid 

corresponding to points on the centreline, because the incompressibility condition in terms of velocity 
components relative to coordinates (r, 4, s) is undefined on the centreline. As outlined in Appendix I 
and further described in Reference 16, at grid points corresponding to points on the pipe centreline we 
use curvilinear co-ordinates which are well defined throughout the flow domain to obtain a valid second- 
order-accurate approximation for the incompressibility condition (1). This coordinate system is chosen 
such that the resulting finite difference approximation can be written as a hct ion of the discrete 
functions q, j,kl and wri, j ,k l  and is of the form 

The discrete equation (41) is a well-defined second-order finite difference approximation to the 
incompressibility condition (1) for p grid points corresponding to points on the centreline of the pipe. 

Recall that wc chosc the &linear co-ordinate system (r, 4,s) because of other dtsirable propaties. For example, after a 
simple w-odhtc  tmmfinmation defined at the beginning of this section, equation (26). coordmatc ' liaesdefimdbyP=l 
coincide with the inna wall of the pipe. 
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Owing to the singular nature of the toroidal co-ordinate system (r, 4, s) at the centreline of the pipe, 
certain conditions necessary for the approximations D2.Gi, j , k l ) ,  Or(& j , k l )  and Dnqi, j,4, defined in 
Table 111, to be valid are not met at grid points adjacent to the centreline. Thls problem arises even 
though the partial derivatives i3f/%, # f / @  and #f/5% are well defined at these grid points for a 
finction f equivalent to u, w or w. In Appendix II we obtain a valid discrete approximation for aO/& at 
points adjacent to the centreline by making use of the same curvilinear coordinates as introduced in 
Appendix I. We used a similar approach to obtain the discrete approximations which are used to 
replace the operators &Mi, j ,k i ) ,  Or(& j , k l )  and O,(Ji, j , k l )  in (37)-(40) at grid points adjacent to the 
centreline. 

We use Newton's method (see e.g. Reference 17) to solve the system of equations (37x40) and (41) 
with corresponding grid boundary conditions (32)-(36) including the condition onpiw. To simplify this 
discussion, we first introduce the vector y where the components of y are the values of the discrete 
finctions ~ [ i ,  j .kl* Y i .  j,klS W [ i , j , k l * ~ [ i ,  j.kl and& at points on the staggeredgrid system. As can be seen in 
Table I, the total number of grid points, the sum of column 5 ,  is 4LMN - LN - LM+ N - 1. Similarly, 
we introduce the discrete vector function g such that the components of g are equal to the left side of the 
finite difference equations (37x40) and(41); namely, using the notation just introduced, the system of 
finite difference equations can be written in the form 

g. I = &.) I J  = 0, (42) 

where i ,  j = 1,2,. . . ,4LMN -LN - LM+ N - 1. In the application of Newton's method to the 
system of equations (42), a sequence of iterative solutions fl is defined through the relations 

f o r i , j = 1 , 2  ,..., 4LMN-LN-LM+N-landn=0,1,2 ,..., where 

and is the initial estimate of yi. We stop the iterative process when 

Iy;+l - y;l < & (45) 

for all i, where we use 8 to 1 x lo-'. In order to obtain solutions yi to (43), we make use of two 
sparse matrix packages which employ direct methods (see e.g. Reference 18). We use a combination 
of sparse matrix routines F04AXF, FOlBRf and FOlBSF from the NAG library,* which employ a 
sparse variation of Gaussian elimination with pivoting for the solution of large sparse matrix 
equations. For denser grid studies (larger systems of equations) we make use of the SMPAKf 
mathematical library, which includes routines that use Gaussian elimination without pivoting to solve 
large sparse matrices. 

4. RESULTS AND DISCUSSION 

4.1. Details of the numerical formulation for specific studies 

As discussed earlier and shown in Figure 2, the flow field is fully developed in regions I and III. For a 
numerical study we must specify the downstream boundary of region III (identified by the axial value 

* NAG, the Numerical Algorithms Group (origmlty the Noaingham Algorithms GIMIp), develops and distriiutes a library of 
mathematical routine!% 

SMPAK is a wmmercial release of the Yale Sparse Matrix Package, sold and supported by Scientific Computing Associates 
InC. 
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smaxIII) apriori and then check the numerical solution to ascertain that this value is large enough so that 
the discrete solution for the flow field is fully developed in some appropriate discrete sense at the 
upstream and downstream limits of the numerical domain. To facilitate the discussion, we restrict our 
attention to one component of the velocity field, namely the radial component. Since the pipe is of 
constant mhus in the two regions under discussion, we define the radial velocity component to be l l ly  
developed in a discrete sense at the axial location corresponding to s2k if 

for all i = 1.2, . . . , L andj  = 1,2, . . . , M, where E was defined in Section 3 following equation (45). It 
may be emphasized that E is the upper bound on the magnitude of the update for the final iteration of 
Newton's method and is therefore a measure of accuracy of the numerical solution. With this in mind we 
define the value of s m q  for our numerical studies to be the smallest value of the arc length s such that 
the discrete approximation to the hlly developed condition (46) is met throughout the cross-section for 
all components of velocity as well as for @I&. Similarly, we define the value of smaxII as the smallest 
value of the arc length s such that s is greater than so and the discrete approximation to the fully 
developed condition is met for all components of velocity as well as for @/& throughout the cross- 
section. 

We obtain this klly developed velocity profile & introduced in equation (23) by solving the system of 
discrete equations (37x40) for flow through a curved pipe of constant cross-section (a = 0.0) with grid 
conditions (32), (34) and (35), piw equal to zero and the nondimensional velocity field at f=O 
specified as 

namely Poiseuille flow. As is discussed in Reference 9, other velocity profiles have also been used when 
studying developing flow in curved pipes of constant cross-section. This choice does not directly affect 
our analysis, because we use it only as a means to obtain the fully developed velocity field %.* 

The constants C, E and EEiE introduced in the co-ordinate mapping s=?(f) in (25) are chosen to 
concentrate the grid points in regions where the flow is most complex. For the pipe geometries 
considered in this work, we use C equal to lr/8 and 5EE equal to 1 1a/8. The value of E is chosen 
dependent on Reynolds number and curvature ratio. 

The computations necessary to solve the system of linear equations (43) were carried out on a CRAY 
Y-MP/864 at the University of California at San Diego and a CRAY Y-MP/832 at the Pittsburgh 
Supercomputing Center. A typical numerical study on the CRAY Y-MP/864 using the SMPAK 
subroutine TDRV required five iterations of Newton's method for the convergence criterion (45) to 
be met. For a staggered grid of dimension (L, M, N) = (1 0, 12, 1 9 ,  approximately 500 s of CPU time 
were used per iteration. The corresponding Jacobian matrix ilgi/+j introduced in equation (43) was of 
order 6944 and contained 185,773 non-zero elements. It was necessary to allocate 15.3 Mwords of 
storage when using the SMPAK subroutine TDRV to solve equation (43) for this case. 

4.2. Results obtained for pow in curved pipes of non-constant cross-section 

Three categories of plots are used to display the velocity field. In the first category of plots we 
consider a longitudinal section of pipe mapped onto the r-s plane. The radial and axial components of 
the velocity vector us + w~ are drawn in this plane; see e.g. Figure 8. In the second and third categories 

Note that we could also obtain the profile y by considering a formulation in which the equations of motion have been 
specialized for fuuy developed flow, a problem involving only two independent variables; see e.g. Reference 5. 
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of plots, e.g. Figures 9 and 10, we consider pipe cross-sections at various locations along the pipe 
centreline defined by specified values of arc length s. Contours of constant axial velocity w are 
displayed in the second category of plots, while for the third category the radial and Circumferential 
components of the velocity at these cross-sections are plotted as the in-plane velocity vector us + we 
(often referred to as the secondary flow). It is important to note that these figures are shown at different 
scales. For comparison, a relative scaling value is indicated in the corresponding captions. These three 
categories of plots are systematically depicted in Figures 4-14 and are shown for a Reynolds number 
equal to 25.0 and curvature ratios equal to 0.0,O.Ol and 0.1. All non-uniform cross-section results are 
for the pipe geometry parameters y = 6-0 and a = 0.5. 

Specifically, consider Figures 7-10 which display velocity fields for Re = 25.0 and b = 0.01. The plot 
in Figure 7 corresponds to a longitudinal pipe section defined by x3 equal to zero, while that in Figure 8 
corresponds to a longitudinal pipe section perpendicular to the xl-xz plane and intersecting the pipe 
centreline. Shown in the upper left and right sections of both these figures are magnifications of two 
sections of the in-plane velocity profile at the axial location s/u = 17.5. Owing to the symmetry of the 
flows under consideration, the two enlarged profiles in Figure 8 are mirror images of each other. They 
have been drawn for comparison with Figure 7, in which the profiles are not related in this way. Figure 9 
shows contours of constant axial velocity w corresponding to increasing values of non-dimensional arc 
length s/a. Similarly, Figure 10 displays the radial and circumferential components of the velocity at 
cross-sections for increasing values of s/u. Owing to the nature of the staggered grid, the second 
category of plots corresponds to pipe cross-sections located at axial positions between those for the third 
category of plots. 

Displayed in Table IV are values of srnuq, smuxn, smuxn1 and the corresponding subtended angle (in 
degrees), where this angle 8 is defined as 

The extent of the flow transition region, namely the difference between s m a u  and srnuq, is shown in 
Table V over a range of Reynolds numbers and curvature ratios. Also shown are the quantities 

I .  . . .  # . . . . I  . . . .  I . . . . I . ,  

18 BD !a 10 #a 
Figure 4. 'Avo componmts of the velocity vector we + w s  for a longitudinal section of pipe and shown in the r-s plane for 
Re = 25.0 and d = 0.0 (stnight pipe). Profiles are drawn a! axial positions s/u = 16.4, 20.4, 24.8, 272, 30.3 and 34.8. Also 

shown arc enlargements of two sections of a profile at s/u = 242 
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Figure 5 .  Contours of constant axial velocity w for the pipe cross-section at arc length s/a equal to (a) 5.4, (b) 20.4, (c) 24.2, (d) 
24.8, (e) 30.3 and (9 46.0 for Re = 25.0 and S = 0.0 

so - s m q  and s m a u  - so, which designate the arc lengths of the sections of region II located 
upstream and downstream of so respectively. 

In the subsequent discussion we refer to Tables N and V and the figures just described in order to 
identify the three flow regimes, namely the transition region and the two regions of fully developed 
flow.* For example, focusing attention on the case of Re = 25-0 and 6 = 0.01, we see from Table IV that 
the region of flow transition lies between s/a = 4-9 and 3 1 a9 and corresponds to Figures 9(bk9(e) and 
lo(b)-lO(e), while Figures 9(a) and lqa )  correspond to flow regime I and Figures 9(f) and l q f )  to 
flow regime 111. 

4.3. Discussion 

We now discuss the results for specific values of Reynolds number and curvature ratio, comparing the 
results obtained for flow through a curved pipe of non-uniform cross-section with those for flow through 
both a straight pipe of non-uniform cross-section and a curved pipe of constant cross-sectional radius. 

First we focus attention on results obtained for flow in a straight pipe of non-constant cross-section, 
shown in Figures 4-6. The results for regions of fully developed flow display the well-known Poiseuille 
solution which is axisymmetric about the pipe centreline with only one non-zero component of velocity, 
w. The first two profiles in Figure 4 and both Figures 5(a) and 6(a) correspond to region I, namely they 
are drawn for axial locations upstream of s/a = 10.4. As the fluid flows downstream through the 

* We obtaia values for smx, and smxn using the discrete condition for fully developed flow defined in Section 3.2. 
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Table Iv. Results obtained for S~QKI,  stnuxn and values specified for so and s m I n  as a h c t i o n  of Reynolds 
number and cumatwe ratio 

6 Re K sola -11. -n/a -In/. 

0-0 1 .o 0.0 7.3 2.9 13.9 20.0 
0.0 25.0 0.0 22.9 10.4 40.8 55.0 
0.01 1 .o 0.2 7.3 (4.2") 2.9 (1.7") 13.9 (8.0") 20.0 (1 1-5") 
0.01 25-0 5-0 16-2 (9.3") 4.9 (2-8") 31-9 (18-3") 40.0 (22.9") 
0. I 1 *o 6.3 7-3 (41-8") 2.9 (16-6") 15.0 (85-7") 20.0 (1 14.6") 
0.1 25-0 15.8 18.5 (106.0") 2.7 (15.8") 34.4 (197.1") 45.0 (257.8") 

Table V Results obtained for the extent of the transition region, s m , ,  - s m 1 ,  as a function of Reynolds number 
and curvature ratio. Also shown are the quantities so - SMI and smuxu - so, which are the extent of this region 

upstream and downstream of so respectively 

6 Re (SmQKn - -d/a (so - =d/a ( s m n  - SO)/. 

0.0 1.0 11.0 
0.0 25.0 30.4 
0.01 1 .o 11.0 (6.3") 
0.01 25.0 27.0 (15.5") 
0.1 1 *o 12.1 (69-3") 
0.1 25.0 31.7 (181.6") 

4.4 6.6 
12.5 17.9 
4.4 (2.5") 6.6 (3.8") 

11.3 (6.5") 15.7 (9.0") 
4.4 (25.2") 7.7 (44.1") 

15.8 (90.5") 15.9 (91.1") 

Figure 6. 'Ihe m-ptnc velocity vector uee + uee for the pipe cmas-section at arc length a / ~  equal to (a) 0.0, (b) 18.6, (4 23.7, (4 
24.5 and (c) 28.5 for Rc=25.O and d=O.O for graphics d i n g  hctor (a) 0.01, (b) 0.00045, (c) 0-01, (d) 0.1 and (e) 0.01 
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Figure 7. h components of the velocity vector us + w s  in the longitudinal section defined by x3 = 0 and shown in the )LS 

plane for Re = 25.0 and 6 = 0.01. Profiles are drawn at axial positions s/u = 8.0, 11.7, 14.6, 17.5, 20.0, 22.3 and 25.5 and the 
enlarged profile at s/u = 17.5 

transition region, the flow remains axisymmetric but develops a non-zero radial component flowing 
outwards towards the pipe wall, Figures 6@)-6(e). Regions of negative axial velocity are found in parts 
of the transition region, as can be seen in Figure 4 (enlarged profiles) and in Figures 5(c) and 5(d), where 
they are drawn as dotted curves. Downstream of the transition region, i.e. s/a greater than 40.8, the flow 
returns to a Poiseuille profile, Figure 5(f). The velocity field in region III differs in magnitude h m  that 
in region I owing to the larger radius in region Ill. 

We now turn attention to results for flow in curved pipes, shown in Figures 7-14. Focusing attention 
on pipes of curvature ratio 0.01 and flow at Reynolds number 25.0, we consider Figures 7-10. In region 

I . . . . , . . . . , . . . . , . . .  

ala 10 I5 a0 a 
F i p  8. 'hvo components of the velocity vector w, + wee in the longitudinal Section defined by angles 4 = 90.0" and 270" and 
sbawn m the F-s plane for Re = 25.0 and 6 = 0.01. Profiles are drawn at axial positions s/a = 8.0, 1 1.7. 14.6, 174,20.0,22.3 

and 25.5 and the enlarged profile at s /a  = 17.5 
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Figurc 9. Contours of constant axial velocity w for the pipe cross-section at acr length s/a equal to (a) 3.9, (b) 16.5, (c) 17.5, (d) 
18.7, (e) 22.3 and ( f )  37.2 for Re=25.0 and 6=0.01 

I we find the expected results for filly developed flow in a curved pipe of circular cross-section; the 
contours of constant axial velocity are shifted outwards h m  the centre of c m t u r e  owing to centrihgal 
forces and are therefore asymmetric relative to the pipe centreline, Figure 9(a). A secondary flow 
characterized by counter-rotating vortices is found, Figure lO(a). As the fluid progresses downstream 
through the region of increasing cross-sectional radius, both the axial velocity contours and the 
secondary flow differ markedly from that in region I. The shift in the axial velocity contours outwards 
h m  the centre of the pipe becomes significantly more pronounced, Figures 9@)-9(e). Moreover, 
contours of negative axial velocity (shown as dotted lines) can be seen in some sections of the transition 
region, Figures 9(c) and 9(d). Figure 9(c) corresponds to the middle profile in Figures 7 and 8. The 
negative axial velocity is clearly seen in the enlarged sections of this profile found at the top of Figures 7 
and 8. Further downstream, Figure 9(e), the regions of negative axial velocity are absent and the 
contours of axial velocity have shifted back towards the pipe centreline. This shift continues as the flow 
travels downs- until it reaches region 111, corresponding to the second region of fully developed 
flow, Figure 9(f). 

We now turn attention from the contours of constant axial velocity to Figures lO(a)-lO(f), which 
display the secondary flow fields at the same values of Reynolds number and curvature ratio just 
discussed. In order to contrast the secondary flow in the transition region with that in regions I and III, 
we refer to the vertical line drawn passing through the centreline on each of the pipe cross-sections and 
observe the velocity vectors along this line. In the first l l l y  developed region, Figure lqa), the in-plane 
velocity vectors at the base of this line (near the symmetry plane) are directed outwards from the 
centreline (towards the right of the plot). As the fluid travels downstream, the velocity vectors are seen to 
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Figun 10. The in-plane velocity vector ug, + ve for the pipe cross-section at arc hgth s/u q ~ d  to (a) 0.0, (b) 15.7, (c) 17.1. 
(d) 18.3, (e)21.0 ando 38.7 forRe=25.0 and$= 0.01 and graphics scaling factor (a) 0.015, (b) 0.04, (c) 0.22, (d) 0.22, (e) 0.1 

and ( f )  0.002 

1 . .  . .  I . . . . I  . . . .  I . . . . I r  

6 16 a a ID #a 
Figun 1 1. h mmponents of the velocity vcctor uee + wg, in the longitudinal section defined by q = 0 and shown in the r-s 
planeforRe=25.0andd=O.I. F’mfiles mdrawnataxialpositionss/u= 13.3, 16.5, 19.7,22.4,24.9and28.2 andtheenlarged 

pf i le  at s/u = 19.7 
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/ r'a/n / " 

/ /' 

L . . . . I . . . . l . . . . ' . . . " y  
(0  16 ?o I s/a 

Figure 12. l k o  mmponents of the velocity vector u s  + w s  in the longitudinal section defined by angles I$ = 90.0" and 270" and 
shown in the r-s plane for Re = 25.0 and 6 = 0.1. Profiles are drawn at axial positions s/u = 13.3.16.5, 19.7.22.4.24.9 and 28.2 

and the enlarged profile at S/Q = 19.7 

F i p  13. Contours of constant axial velocity w for the pipe cross-section at arc length s/a equal to (a) 4.4, (b) 18.6, (c) 19.7, (d) 
22.4 and (e) 41.8 for Re=25.0 and 6=0.1 
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. .  . .  ' 

., I I '  

Figurc 14. The in-plane velocity vector uc + w4 for the pipe cross-section at arc length s/a equal to (a) 0.0, (b) 17.7, (c) 19.3, 
(d) 21.6 and (e) 39.9 for Re=25.0 and 6=0.1 for graphics scaling factor (a) 0.135, (b) 0.22, (c) 0.65, (d) 0.22 and 

(e) 0.0135 

increase by more than a factor of 10 in magnitude, Figures lO(b)-lO(d), relative to that found in region I. 
Further downstream, Figure lqe), these vectors decrease in magnitude and become directed inwards 
from the pipe centreline. As seen in Figure 10(f), even further downstream these vectors are once again 
directed outwards from the centreline. Similarly, the velocity vector at points along the vertical line in 
the neighbourhood of the pipe boundary can also be seen to shift direction. 

We consider the effect of curvature ratio on the flow field by comparing the results just discussed (for 
flow in pipes of curvature ratio 6 = 0.01) with results obtained for a pipe with curvature ratio 6 = 0.1, 
Figures 11-14. Comparing Figures 9 and 13, it can be seen that the contours of constant axial velocity 
for pipes of curvature ratio 0.1 are qualitatively similar to those for a pipe of curvature ratio 0.01, though 
the axial shift is much more dramatic for pipes of b = 0.1. In addition, at higher curvature ratios the 
regions of negative axial velocity occupy a larger portion of the cross-section (compare e.g. Figures 7 
and 11). 

We close this section with a comparison of the extent of the transition region, smarn - s m I ,  for 
different combinations of Reynolds number and curvature ratio. It is clear from the results shown in 
Table V that the extent of the transition region, written with respect to non-dimensional arc length, is 
strongly a function of Reynolds number and a relatively weak function of curvature ratio for the 
parameters considered. 

Theoretical studies of flow in stenosed arteries usually do not incorporate the curvature of the pipe, 
considering the flow in straight pipes instead. In these cases it is assumed that the effect of pipe 
curvature on the flow is negligible relative to other effects such as non-unifonnity of the cross-section. 
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However, as discussed above, the interplay of these two effects is highly non-linear, so comparing these 
effects separately can be misleading. We expect that the coupled effects of curvature and non-uniform 
pipe radius will be even more important at higher Reynolds numbers, e.g. in the range found in arterial 
flows. 
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APPENDIX I 

The purpose of this appendix is to outline the steps used to obtain a second-order-accurate valid 
approximation to the equation of incompressibility (1) at grid points corresponding to points on the pipe 
centreline. In view of this, we now introduce curvilinear co-ordinates 2 which are well defined 
throughout the flow domain and for which co-ordinate curves intersect the staggered grid in a manner 
which enables us to write the finite difference approximation for the equation of incompressibility as a 
fimction of uli, j ,kl  and wri* j , k l .  This co-ordinate system may be defined in terms of the Cartesian co- 
ordinates xi as 

and inverse relations 

x3 = uq(2 cos 0 + 5' sin w), 

where the function 3(f) is defined in (25) and the constant angle w will be specified later such that co- 
ordinate curves intersect grid lines. We introduce dimensionless velocity components u*, w* and w* 
with respect to rectangular components of the velocity vector wi = ps, as 
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Using (49H5 l), the incompressibility equation (1) can be written with respect to coordinates 2 and as 
a function of the velocity components u*, u* and w* as 

1 au* lav* aw* &(ti9 - l  &*5' dq o=---.+-- + - -  
qE@ qXi2 [z3( d E 3 )  Sl qdZ3 

which is well defined on the pipe centreline ti' = 22 = 0, where it takes the form 

+ 6U* cos 0 - 6U* sin 0. 
l&* I & *  aw* G(E3) - I  -- +--+- - 
q&l ?la$ a53 ( d 6 3 )  (53) 

We are now in a position to introduce a second-order finite difference approximation to (53) at the 
mtreline as 

O =  + 2qAti1 
u*(Ah', 0, h3) - u*(-Ah', 0.5') u*(O, A S ,  2) - u*(O, - A S ,  c3) 

2qAE2 

1 (~l.?.?~~))-' (w*(Ahl, 0, i3 + Ai3)  + w*(-AE', 0, ti3 + Ah3) 
2 +- - 2 ~ ~ 3  

1 w*(AZil, 0, E? - Ah3) + w*(-Ai', 0, Z3 - At? 
2 

- 

I ,  0, i3) + u*(-At', 0, "'> . ("'(0, AE2, d) + u*,. , -AE2, "1)) 
2 

- 6 s m o  
+6cosw(U*(Ah 2 1 

(54) 
where A$, ACz and AE3 are constants which will be defined later in this section. The relationship 
between 2 and (P, 4, f )  can be displayed as 

2 = rcoS(4 - o), 2 = Fsin(4 - a), 3 = j  (55) 
and the relationship between (u*, u*, w*) and (u, u, w) is 

u* = ucos(c#J - 0) - usin(#J - 0). u* = 11 sin(#J - 0) + 0 COS(r$ - 0). w = w. 
(56) 

With the motivation that the locations at which u and w are evaluated coincide with locations where 
tqi, j , k ~  and wri, j,kl are defined on the staggered grid system respectively, we now choose 

Using (55)-(57), we rewrite the finite difference approximation (54) in terms of the discrete functions 
"[i. j . ~  and w[i. j , ~ ,  m e l ~  
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where we have made use of (20) and evaluated the result at Sequal to s lh  The discrete equation (58) is a 
well-defined second-order finite Merence approximation to the incompressibility condition (1) for p 
grid points corresponding to points on the centreline of the pipe. 

APPENDIX I1 

In this appendix we obtain a valid second-order finite difference approximation for k/ai at grid points 
adjacent to the centreline, namely for points corresponding to f =  rl1. This discrete approximation will 
be used to replace the discrete operator D2(q1,,,k1) in equations (37x40). In a similar manner, second- 
order finite difference approximations can be obtained for &/%, %/*, &/@, &/@, #w/@, 
$u/aiC, # u / S C  and #w/ai% for points adjacent to the centreline. 
Using the relationship between co-ordinates a' and (F, 9, S) in equation ( 5 9 ,  we obtain 

&* & + & I  &*&Z &* av* 
at? -- ai --- & I & + - - = -  a 5 2  & %I cos(f#J - w) +-sin($ - w). (59) 

Another representation of k*/* can be obtained using (56), as 

(60) 
&* a[usin($ - w)] a[vcos(c$ - o)] k av 
ai ai + a  ai a = -sin($ - 0) + -cos(r$ - w). -- - 

Combining the results (59) and (60) for I$ equal to w, we obtain 

k* av 
-I (F, 0, i )  = - (F, w ,  5) for all F > 0, aa ai 

where use has also been made of (55) evaluated for $ equal to w, namely 

(62) a - 1  =F, $ = O  and $ = 5  for $=a. 

Since the co-ordinates t# are non-singular and u*, tP and w* satisfy all the conditions for the 
applicability of Taylor's theorem, a second-order discrete approximation to k*/& a! points 
(2. E2,  i3) = (rl 0 , 5 )  is 

+ qw2, k* 
-(rl1.0,5) = 
&I 

U*(3AF/2,0, 5)  - U*(-AF/2,0, S) 
2AF 

where it should be recalled from (30) that rl1= b-12. Making use of (20), (55) and (56), it follows h m  
(63) that 

+ k* 
a% 

v(3AF/2, w, S) + v(AF/2, x + w, Z) 
2AF 

v(3AF/2, 0, 5)  - u(AF/2, IZ - W ,  i )  
2AF 

-+rl].o.5) = 

+ qAF)z.  (64) - - 

A h  combining the results (61) and (a), utilizing the definition of the discrete function q,, j,kl of 
Section 3 and evaluating these results for o = $2j and 9=slb we obtain 

where (65) is a second-order finite difference approximation to aV/S at u grid points corresponding to 
r l  I = Aq2. 
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